Документ подписан простой электронной подписью Информация о владельце:

ФИО: БОГДАНОВА И.А.ПЕРМСКИЙ ИНСТИТУТ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Должность: и о директора ПИЖТ УОГУП филиан федерального государственного бюджетного образовательного учреждения дата подписания: 31.05.2023 18:09:11 высшего образования

(ПИЖТ УрГУПС)

Фонд оценочных средств

по дисциплине ОП 03 «Техническая механика для специальности

08.02.10 Строительство железных дорог, путь и путевое хозяйство

Квалификация: техник Форма обучения: очная Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности СПО 08.02.10 Строительство железных дорог, путь и путевое хозяйство, программы лиспиплины «Техническая механика».

1. Паспорт фонда оценочных средств

В результате освоения дисциплины обучающийся должен обладать предусмотренными ФГОС следующими умениями, знаниями, профессиональными и общими компетенциями:

Умения:

- У1 уметь производить расчеты на срез и смятие,
- У2 уметь производить расчеты на кручение,
- УЗ уметь производить расчеты на изгиб;

Знания:

- 31 знать основы теоретической механики,
- 32 знать основы статики,
- 33 знать основы кинематики,
- 34 знать основы динамики,
- 35 знать детали механизмов и машин,
- 36 знать элементы конструкций.

Общие компетенции:

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Профессиональные компетенции:

- ПК 2.1. Участвовать в проектировании и строительстве железных дорог, зданий и сооружений.
- ПК 2.2. Производить ремонт и строительство железнодорожного пути с использованием средств механизации.

ПК 2.3. Контролировать качество текущего содержания пути, ремонтных и строительных работ, организовывать их приемку.

1.1. Результаты освоения дисциплины, подлежащие проверке

В результате аттестации по дисциплине осуществляется комплексная проверка следующих умений, знаний, компетенций:

Таблица 1

Контролируемые разделы (темы) дисциплины, модуля*	Результаты освоения (объекты оценивания)	Основные показатели оценки результата и их критерии
Раздел 1. Основы теоретической механики.	ОК 2 - 5; ПК 1.1.	- умение рационально выбирать метод решения и составлять схему сил; - полнота анализа движения, умение определять искомые кинематические и динамические характеристики.
Раздел 2. Сопротивление материалов.	OK 2 - OK5; ПК 2.1 ПК 2.3.	- выполнение прочностных расчетов на растяжение - сжатие при проектировании железных дорог, зданий и сооружений); - успешное выполнение практических работ по расчетам пролетов ж/д мостов, несущих конструкций пути, деталей и узлов путевых машин (изгиб, кручение).
Раздел 3. Детали механизмов и машин.	35; 36; ОК 2 -ОК5; ПК 2.1 - ПК 2.3.	- успешное выполнение практических работ и проектов по изучению конструкции и расчета передач, используемых в устройстве путевых машин и механизмов; - успешное выполнение проектов и презентаций по темам применения изучаемых механизмов и деталей в устройстве путевых машин и механизмов.

1.2. Оценка освоения дисциплины

Предметом оценки служат знания, умения и компетенции, на формирование которых направлена дисциплина «Техническая механика в в соответствии с $\Phi \Gamma OC$.

Формы и методы контроля освоения дисциплины отражены в таблице 2

Таблица 2 **Контроль и оценка освоения дисциплины по темам (разделам)**

		Формы и методы контроля							
Juneani manna man	Текущий контроль		Рубежный контроль		Промежуточная аттестация				
Элемент дисциплины	Форма контроля	Проверяемые ПК, ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3			
Раздел 1.	Практические занятия № 1-6.	У 1-2; З 1;	-						
Основы технической	Тестирование.	ОК 1-9;							
механики		ПК 2.1-2.3;							
Раздел 2.	Практические занятия № 7 - 11	У 1-2; З 1-3;	-			У 1-2; З 1;			
Сопротивление	Тестирование	ОК 1-9;			- Draw corr	OK 1-9;			
материалов	Контрольная работа.	ПК 2.1-2.3; 3.1			Экзамен	ПК 2.1-2.3;			
Раздел 3.		У 1-2; З 1-3;	-			11K 2.1-2.5,			
Детали машин	Практическое занятие № 12.	ОК 1-9;							
	Тестирование	ПК 2.1-2.2; 3.1-							
	_	3.2							

2. Оценочные средства для текущего контроля

Тестовые задания для оценки освоения (в каждом вопросе один правильный ответ):

Раздела 1 Основы технической механики.

31-3., У1-2.,ПК 2.1.- 2.3, 3.1 ОК1-9

Критерии оценивания 1 правильный ответ – 1 балл.

Время выполнения 5 мин.

<u>Тест 1.</u>

Вариант 1.

1.	Впишите вместо многоточия правильный ответ: Статика изучает тел.	А. равновесиеВ. массуС. движение
2.	Закончите предложение: Проекция силы на ось равна 0, если сила по отношению к оси	А. параллельна. В. наклонна. С. перпендикулярна.
3.	Укажите верное изображение реакций жестко - защемленной:	A. R _{Ay} M _A
		B. Ray MI _A A R _{AX}
		A R _{AX}
4.	Впишите вместо многоточия правильный ответ: плоской системы сходящихся сил изображается замыкающей стороной силового многоугольника.	А. Равнодействующая В. Приложенная С. Уравновешивающая
5.	Закончите предложение: Сила изображается с помощью	А. скаляра. В. дуги. С. вектора.

4			wich ciberob.		
Вопрос	1	2	3	4	5
1	A	C	В	A	C
2	В	C	A	C	В
3	C	В	A	В	C
4	A	C	В	A	C
5	В	C	A	C	В
6	C	A	В	C	В

Тест 2 Вариант 1.

	<u> Бариант 1.</u>	1			
2.	Впишите вместо многоточия правильный ответ: Система сил называется , если линии действия всех ее сил лежат в одной плоскости. Закончите предложение: Момент силы относительно точки равен нулю, если ее линия действия проходит	А. пространственной В. сходящейся С. плоской А. параллельно. В. через точку. С. перпендикулярно			
3.	Укажите верную запись столбца реакции R _{AV} для шарнирно - закрепленной балки:		A. B	. C.	R _{AY}
	R_{AY} R_{B} q	$m_{\rm A}$ $m_{\rm B}$ $F_{\rm nx}$	0 R _{Ay} · AB	0 R _{Ay} - AB	R _{Ay} · AB 0
	R_{AX} R_{AX} R_{AX} R_{AX} R_{AX}	F _{nx}	+ R _{AV}	- R _{AY}	+ R _{AV}
	q · C D ↓				
4.	Впишите вместо многоточия правильный ответ: Равнодействующая распределенной нагрузки приложена участка нагружения.	А. в нача В. в сере С . в кон	едине		
5.	Укажите верную запись формулы главного вектора системы произвольно расположенных сил:	A. $\overrightarrow{R} = \Sigma \overrightarrow{F_n}$ B. $R = \Sigma F_{nx}$			
		C. R=			

Вариант	1	2	3	4	5	6
1	С	В	A	В	A	С
2	В	C	В	A	C	В
3	A	В	C	C	В	A
4	В	A	A	A	C	C
5	A	С	В	В	A	В

Тест 3 Вариант 1.

	<u>Вариант 1.</u>	
	Впишите вместо многоточия правильный ответ:	А. пути.
1.	Ускорение характеризует быстроту изменения	В. траектории.
		С. скорости.
	Укажите правильную формулу линейной скорости во	$\mathbf{A}. \ v = \ \mathbf{\omega} \cdot \mathbf{r}$
2.	вращательном движении:	
		$\mathbf{B.} \ v = \ \omega^2 \cdot d$
		$\mathbf{C} \cdot \mathbf{v} = \mathbf{\omega} / \mathbf{r}$
3.	Укажите верные формулу и кинематический график пути в равномерном движении:	A. $S = v_o \cdot t + (a \cdot t^2)/2$ t $S = v_o \cdot t + (a \cdot t^2)/2$ $S = v_o \cdot t + (a \cdot t^2)/2$ $C. \qquad t$
4.	Закончите формулировку основного закона динамики:	А. обратно пропорционально ей. В. не зависит от нее.
	Ускорение, сообщаемое телу приложенной силой, имеет направление силы и	С. пропорционально ей.
	Укажите правильную запись формулы работы на	$\mathbf{A.} \mathbf{W} = \mathbf{F} \cdot \mathbf{v}$
5.	прямолинейном перемещении:	$\mathbf{B.} \mathbf{W} = \mathbf{F} \cdot \mathbf{s}$
		$\mathbf{C.} \mathbf{W} = \mathbf{F} \cdot \mathbf{a}$
		_ C w

Вопрос	1	2	3	4	5
1	C	A	В	C	В
2	В	C	A	C	A
3	A	В	С	В	A
4	C	В	A	В	С
5	A	C	A	В	С
6	В	A	C	В	A

Раздела 2 Сопротивление материалов.. 31-3., У1-2.,ПК 2.1.- 2.3, 3.1 ОК1-9

<u>Критерии оценивания</u> <u>Время выполнения</u> 1 правильный ответ – 1 балл. 5 мин.

Тест 1. Вариант 1.

		phan 1:
1.	Вставьте вместо многоточия правильный ответ: Расчет на прочность проводится из условия, чтобы детали и конструкции не	А. растягивались. В. деформировались. С. разрушались. D. сжимались.
2.	Закончите предложение: Материал называется анизотропным, если его свойства не одинаковы	А. при растяжении - сжатии. В. по всем направлениям. С. во всех точках. D. по всем сечениям.
3.	Вставьте вместо многоточия правильный ответ: деформация исчезает после снятия нагрузки.	А Остаточная В. Полная С. Упругая D. Пластическая
4.	Закончите предложение: Метод, который позволяет по внешним нагрузкам определить внутренние силы упругости, называется методом	А. сил В. нагрузок. С. перемещений. D. сечений.
5.	Укажите, как действуют полные напряжения.	А.в плоскости сечения. В. по всем направлениям. С. произвольно. D. перпендикулярно сечению.

Вариант	1	2	3	4	5	6
1	C	D	В	A	A	D
2	В	A	C	В	D	C
3	C	В	A	C	В	В
4	D	C	D	D	C	D
5	C	A	C	A	В	A

Тест 3. Вариант 1.

		Вариант 1.
2.	Закончите предложение: Продольная сила в сечении равна алгебраической сумме внешних сил, действующих Вставьте вместо многоточия правильный ответ: При растяжении - сжатии в сечении возникают напряжения. Укажите правильную эпюру продольных сил N _если:	А. в сечении. В. по одну сторону от сечения. С. на брус. D. за сечением. А. касательные В. полные С. нормальные и касательные D. нормальные A. В. С.
	$F_1 = 12 \text{ kH};$ $F_2 = 15 \text{ kH}$	F_2 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_8 F_8 F_8 F_9
4.	Закончите предложение: Формула для вычисления относительных продольных деформаций имеет вид:	A. $\varepsilon = \Delta l + l$ B. $\varepsilon = \Delta l \cdot l$ C. $\varepsilon = \Delta l / l$ D. $\varepsilon = \Delta l - l$
5.	$\frac{\text{Впишите вместо многоточия}}{\text{правильный ответ:}}$ $\underline{\text{Если при проверочном расчете}}$ имеет место соотношение $\sigma = [\sigma], \text{то}$	 А. обеспечена только прочность. В. обеспечиваются и прочность и долговечность. С. прочность не обеспечена.

Вариант	1	2	3	4	5	6
1	C	A	В	D	C	В
2	D	В	D	C	A	D
3	В	A	C	A	C	В
4	A	D	D	В	D	C
5	В	C	A	C	В	A

Тест 4. Вариант 1.

	Ва	риант 1.
1.	Укажите единицу измерения модуля	A. $\kappa\Gamma/M^2$ B. (H M) c^2
	сдвига материала G.	С. H/кг D. H/мм ²
3.	сдвига материала G. Впишите вместо многоточия правильный ответ: При вычислении крутящего момента M_{κ} внешний момент считается при повороте отсеченной части по часовой стрелке Укажите правильную эпіору крутящих моментов $M_{K_{\kappa}}$ если: $T_1 = 180 \text{ Hm}$; $T_2 = 60 \text{ Hm}$; $T_3 = 120 \text{Hm}$.	А. отрицательным В. нулевым С. положительным D. постоянным
		B 120 60 M _K HM 60 HM
4.	Закончите предложение: При кручении вала максимальные касательные напряжения возникают	А. на оси вала. В. во всех точках сечения. С. на расстоянии половины радиуса от центра. D. на поверхности вала
5.	Укажите верную запись формулы для	A. $\varphi = (M_K \cdot I) / (G \cdot J_P) - B.$ $\varphi = M_K / W_P$
	вычисления угла закручивания ф:	$\mathbf{C.} \ \phi = (\mathbf{M_K} t) / (\mathbf{G} J P) $ $\mathbf{D.} \ \phi = \mathbf{M_K} / (\mathbf{G} J P) $
L	J +-	υ ψ 111 _K , (υ ν γ)

			oranion orbero	1		1
Вариант	1	2	3	4	5	6
1	C	D	В	A	A	D
2	В	A	C	В	D	C
3	C	В	A	C	В	В
4	D	C	D	D	C	D
5	A	A	C	A	В	A

Тест 5. Вариант 1.

4	n	Duphum 1.			
1.	Закончите предложение:	А. продольная сила N и крутящий момент M к.			
	При изгибе возникают внутренние	${f B}$ поперечная сила ${f Q}_y$ и изгибающий момент ${f M}_u$.			
	силовые факторы:	С. поперечная сила Q $_{y}$ и крутящий момент M $_{\kappa}$.			
		${f D}$. продольная сила ${f N}$ и изгибающий момент ${f M}_u$.			
2.	Впишите вместо многоточия	А. продольные			
	правильный ответ:	В. пластические			
	На нейтральном слое балки	С. поперечные			
	отсутствуют деформации.	D. упруги			
3.	Укажите правильную эпюру	1 m /			
	поперечных сил Q _{v.} если:	''' / \			
	m = 50кНм.	/			
		5 _M →			
		· · · · · · · · · · · · · · · · · · ·			
		А. 0			
		50			
		50			
		L 1 Y			
		В 0			
		C.0 OvsKHM			
	D	237			
4.	Впишите вместо многоточия	А. чистый изгиб.			
	правильный ответ:	В.закручивание.			
	При изгибе продольные волокна	С. чистый прогиб.			
	балки испытывают	D. чистое растяжение или сжатие.			
5.	Укажите верную запись формулы	$\mathbf{A.} \ \mathbf{W_x} \ge \mathbf{M_u} / [\sigma] \qquad \qquad \mathbf{B.} \ \mathbf{A} \ge \mathbf{N} / [\sigma]$			
	проектного расчета при изгибе:	$\mathbf{C.} \ \mathbf{A} \leq \mathbf{N} \ / \ [\sigma] \qquad \qquad \mathbf{D.} \ \mathbf{W}_{x} \leq \mathbf{M}_{u} / [\sigma]$			

Вариант	1	2	3	4	5	6
1	A	C	C	D	C	В
2	C	A	D	A	A	A
3	В	В	A	В	В	C
4	D	D	В	C	C	D
5	A	A	D	A	D	A

Тест 5. Вариант 1.

	1	WIII 1.
1.	Впишите вместо многоточия правильный	
	OTBET:	А. Нейтральный
	слой – это слой волокон, который не	В. Наружный
	испытывает продольных деформаций при	С. Внутренний
	изгибе.	D. Продольный
2.	Закончите предложение:	А. нормальных сил упругости
	Под поперечной силой Q _v понимается	В. наклонных сил упругости.
	равнодействующая внутренних	С. касательных сил упругости.
	publication by the many many many many many many many many	D. нормальных и касательных сил упругости.
3.		• • • • • • • • • • • • • • • • • • • •
3.	V.	T
	Укажите правильную эпюру изгибающих	→
	моментов М _{и,} если:	4 _M 1 _M
	F = 20 kH.	↑
		[100
		$ A $ $ M_{U}$, κ HM
		В Ми, кНм
		80
		$ C M_{\rm W}, \kappa H_{\rm M}$
		0
		'
4.	Впишите вместо многоточия правильный ответ:	А. около поверхности бруса
	При изгибе касательные напряжения	В. на наружных волокнах
	принимают наибольшие значения	С. на середине высоты
	1	D. на нейтральном слое
5.	Укажите верную запись формулы для	A. $\sigma_{\text{max}} = M_{\text{H}} / W_{\text{x}}$ B. $\sigma_{\text{max}} = M_{\text{H}} / G J_{\text{x}}$
] 3.	вычисления максимальных нормальных	$O_{\text{max}} - \text{IVI}_{\text{M}} / \text{VV}_{\text{X}} \textbf{D.} O_{\text{max}} - \text{IVI}_{\text{M}} / \text{O} \mathcal{J}_{\text{X}}$
	напряжений:	C = M/I D = MW
	папримении.	$\mathbf{C} \cdot \sigma_{\text{max}} = \mathbf{M}_{\text{H}} / \mathbf{J}_{\text{X}} \mathbf{D} \cdot \sigma_{\text{max}} = \mathbf{M}_{\text{H}} \cdot \mathbf{W}_{\text{X}}$

Эталон ответов

			3 Tunion of Built			
Вариант	1	2	3	4	5	6
1	C	D	В	A	A	D
2	В	A	C	В	D	C
3	C	В	A	C	В	В
4	D	C	D	D	C	D
5	A	A	C	A	В	A

Контрольная работа.

Для шарнирно закрепленной балки, реакции опор которой были определены в Практической работе № 3 построить эпюры Q_y и $M_{u;}$ подобрать из условия прочности поперечное сечение двутавр).

Учитывать только вертикальные нагрузки.

Раздела 3 Детали механизмов и машин.

31-3., У1-2.,ПК 2.1.- 2.3, 3.1 ОК1-9

<u>Критерии оценивания</u> 1 правильный ответ – 1 балл.

Время выполнения 5 мин.

Тест 1. Вариант 1.

	Закончите предложение:	А. преобразование рабо		
1.	Одной из функций энергетических	В. выполнение механической работы.		
	машин является –	С. совершение работы	по перемещению тел.	
		D. обработка деталей.		
	Вставьте вместо многоточия	А. транспортным	В. энергетическим	
2.	правильный ответ:			
	Прокатные станы относятся к	С. информационным	D. технологическим	
	машинам.			
	Назовите детали, обслуживающие	А. зубчатые колеса.	В. болты.	
3.	передачу или преобразование	С. подшипники	D. червячные колеса.	
	движения			
	Закончите предложение:	A. 2.	B. 1.	
4.	Характеристики ведущего звена	C. 0.	D. 1-2.	
	кинематической пары имеют индекс			
	Впишите вместо многоточия	А. использованием сма	зок В. охлаждением.	
5.	правильный ответ:	С. корректными расчет	гами. D. закалкой.	
	Прочность обеспечивается			

Вариант	1	2	3	4	5	6
1	A	В	D	C	В	A
2	D	C	C	D	A	D
3	В	A	В	A	D	С
4	С	D	A	D	A	В
5	В	В	C	В	С	С

Тест 2. Вариант 1.

	Назовите один из случаев	А. для преобразования работы в энергию.
1.	применения передач:	В. для увеличения угловой скорости.
		С. для изменения плоскости вращения.
		D. для уменьшения вращающего момента.
	Вставьте вместо многоточия	А. с непосредственным соединением звеньев.
2.	правильный ответ:	В. трением.
	Червячная передача относится к	С. с промежуточным звеном.
	передачам	D. гибкой связью.
	1	
3	Укажите пропущенную на схеме характеристику передачи:	A. ω_1 B. ω_2 C. d_1 D. d_2 $\frac{1}{2}$
	Demony me nyteeme	A 770 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
	Вставьте вместо многоточия	А. проскальзывание.
4.	правильный ответ:	В. передача движения на расстояние.
	Одним из достоинств зубчатых	С. простота изготовления и эксплуатации.
	передач является	D. высокий К.П.Д.
_	Укажите верную запись формулы	A. $u = z_1 \cdot z_2$ B. $u = z_2 / z_1$
5.	передаточного отношения зубчатой	
	передачи:	C. $u = z_1/z_2$ D. $u = z_2 \cdot z_1$

Эталон ответов

	Station orbeion					
Вариант	1	2	3	4	5	6
1	A	В	C	D	A	C
2	C	D	В	A	C	A
3	D	A	C	D	В	В
4	В	C	A	В	D	D
5	A	D	D	C	В	В

3. Оценочные средства для промежуточной аттестации

Перечень вопросов к экзамену: Теоретические вопросы к тестовому заданию.

- 1. Виды расчетов: на прочность, жесткость и устойчивость.
- 2. Допущения о материалах: однородность и изотропность.
- 3. Внутренние силы упругости.
- 4.Понятие " деформация", виды деформаций.
- 5.Классификация видов нагружений в зависимости от внутренних силовых факторов.
- 6. Напряжение, виды напряжений.
- 7.Внутренний силовой фактор при растяжении сжатии- продольная сила N: определение, правило вычисления, правило знаков .
- 8. Нормальные напряжения при растяжении сжатии.
- 9. Продольные деформации при растяжении сжатии.
- 10.Поперечные деформации при растяжении сжатии, коэффициент Пуассона.
- 11. Связь между напряжениями и деформациями при растяжении сжатии, закон Гука.
- 12 Следствие из закона Гука формула Гука.
- 13. Рабочие, опасные и допускаемые нормальные напряжения.
- 14. Условие прочности при растяжении сжатии.
- 15. Проектный расчет при растяжении сжатии.
- 16. Расчет допускаемой нагрузки при растяжении сжатии.
- 17. Проверочный расчет при растяжении сжатии.
- 18. Внутренний силовой фактор при кручении — крутящий момент M $_{\kappa}$: определение, правило вычисления, правило знаков .
- 19. Понятие о чистом сдвиге. Закон парности касательных напряжений.
- 20. Абсолютные деформации при чистом сдвиге. Закон Гука.
- 21. Деформации волокон при кручении.
- 22. Касательные напряжения при кручении, их распределение по сечению.
- 23. Максимальные касательные напряжения при кручении.
- 24. Условие прочности и проектный расчет при кручении.
- 25.Понятия изгиба: нейтральный слой, нейтральная ось.
- 26. Внутренний силовой фактор при изгибе поперечной силе Q_y : определение, правило вычисления, правило знаков.
- 27. Внутренний силовой фактор при изгибе изгибающий момент M u: определение, правило вычисления, правило знаков.
- 28. Нормальные напряжения при изгибе, их распределении по поперечному сечению.
- 29. Расчет на прочность при изгибе: условие прочности и проектный расчет.
- 30. Касательные напряжения при изгибе.

Задачи на построение эпюр.

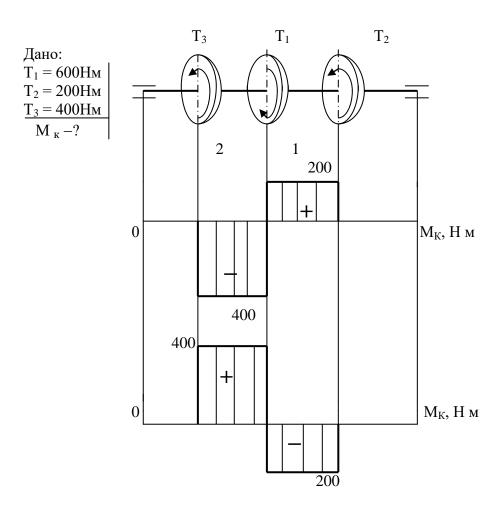
- 1. продольной силы N при растяжении сжатии;
- 2.крутящего момента М к при кручении;
- 3. поперечной силы Q _у и изгибающего момента M и при изгибе (для жестко защемленной балки).

Раздел "Детали машин".

- 1. Машина, функции машин.
- 2. Рабочие машины: функция и виды.
- 3. Энергетические машины: функция и виды.
- 4. Информационные машины: функция и виды.
- 5. Кинематические пара и звено. Виды кинематических звеньев в паре.
- 6. Кинематическая цепь.
- 7. Понятие "деталь", детали общего назначения.
- 9. Группы деталей общего назначения.
- 10. Детали специального назначения.
- 11. Сборочный узел.
- 12. Требования к машинам, деталям и узлам: прочность и жесткость.
- 13. Требования к машинам, деталям и узлам: износостойкость и термостойкость.
- 14. Требования к машинам, деталям и узлам: экономичность, взаимозаменяемость.
- 15. Понятие "передача", случаи применения передач.
- 16. Классификация передач по физическим условиям осуществления.
- 17. Классификация передач по способу соединения звеньев.

- 18. Понятие "передаточное отношение", формула.
- 19. Многоступенчатая передача: передаточное отношение.
- 20. Многоступенчатая передача: коэффициент полезного действия.
- 21. Зубчатые передачи: назначение, устройство, классификация.
- 22. Зубчатые передачи: достоинства, недостатки, область применения.
- 23. Геометрия зубчатого зацепления.
- 24.Параметры цилиндрического колеса.
- 25. Передаточное отношение (число) зубчатой передачи.
- 26. Червячные передачи: назначение, устройство, классификация, достоинства.
- 27. Червячные передачи: недостатки, область применения.
- 28. Червячные передачи: передаточное отношение, его вычисление.
- 29. Редукторы: назначение и устройство.
- 30. Классификация редукторов по типу передач.

Экзаменационный билет (образец)


Разделы "Сопротивление материалов" и "Детали машин"

Рассмотрено цикловой	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1	УТВЕРЖДАЮ:	
комиссией			
	Предмет: Техническая механика	Руководитель СП СПО	
	Специальность 08.02.10 Семестр 4	"2018	

1.	Вставьте вместо многоточия правильный ответ: Расчет на проводится из условия, чтобы деформации не препятствовали нормальной эксплуатации.	А. прочность В. упругость С.устойчивость D. жесткость.
2.	Вставьте вместо многоточия правильный ответ: Под продольной силой понимается равнодействующая нормальных сил упругости, препятствующих деформации тела в продольном направлении.	А. внешних В. заданных С. внутренних D. внешних и внутренних .
3.	Закончите предложение: Формула, выражающая закон Гука при растяжении - сжатии имеет вид:	$A. σ = E \cdot ε$ $B. σ = E + ε$ $D. σ = E / ε$
4.	Вставьте вместо многоточия правильный ответ: При кручении вала максимальные касательные напряжения возникают	 А. на вертикальном диаметре сечения В. на оси вала. С. на горизонтальном диаметре сечения D. на поверхности вала.
5.	Укажите формулу полярного момента сопротивления круглого сечения - W_P ?	A. $(\pi d^3)/32$ B. $(\pi d^4)/32$ C. $(\pi d^3)/16$ D. $(\pi r^4)/4$
6.	Начните предложение слой – это слой волокон, который не испытывает продольных деформаций при изгибе.	А. Нейтральный В. Наружный С. Внутренний D. Продольный
7.	Закончите предложение: При изгибе поперечные сечения балки остаются	А. изогнутыми В. сдвинутыми С. постоянными D. плоскими
8.	Вставьте вместо многоточия правильный ответ: Деталями называются детали, которые используются во многих машинах и изготавливаются большими партиями.	А. общего назначения В. стандартными. С. механизмов. О.специального назначения.
9.	Закончите предложение: В формуле передаточного отношения червячной передачи $u=z_2/z_1$ характеристика z_1 означает число	А. зубьев колеса.В. заходов червякаС. зубьев шестерни.D. окружной шаг
10.	Назовите тип передачи, изображенной на схеме.	А. цилиндрическая косозубая. В. червячная С. цилиндрическая прямозубая. D. коническая.

Задача.

Укажите правильную эпюру крутящих моментов М "и обоснуйте свой выбор вычислениями.

 $M_{K1} =$

 $M_{K2} =$

Критерии оценки экзаменационной работы.

Тестовое задание.

1 правильный ответ – 4 балла.

Решение задачи –

- 10 баллов если правильно вычислены значения В.С.Ф. и сделан вывод о правильности эпюр.
- 8 баллов если значения В.С.Ф. определены с незначительными ошибками и сделан вывод о правильности эпюр.
- 6 баллов если значения В.С.Ф. определены с серьезными ошибками и не сделан вывод о правильности эпюр.
- 4 балла и ниже если значения В.С.Ф. не определены с серьезными ошибками и не сделан вывод о правильности эпюр.

Оценка «5» (отлично) ставится, если сумма баллов составит 50 - 45 баллов;

Оценка «**4**» **(хорошо**)) ставится, если сумма баллов составит 44 - 35 баллов;

Оценка «3» (удовлетворительно) ставится, если сумма баллов составит 34 – 25 баллов;

Оценка «2» (неудовлетворительно) ставится, если сумма баллов составит менее 25 баллов.

Лист согласования

Дополнения и изменения к комплекту ФОС на учебный год

,	Дополнения	и измен	ения к і	комплекту	ФОС н	a	_ учебный	год
цисцип	лине							
-	В комплект Ф	ОС внесе	ены следуг	ющие измен	ения:			
								
				 				
,	Дополнения	и изме	нения в	комплекте	ФОС	обсуждены	на заседан	—— нии L
(»	20	_г. (прото	окол №).			
Іредсе	датель ЦК _		/_			_/		
	 наватель							